The MRC Regional Stakeholder Forum

14th - 15th December 2017

Vientiane, Lao PDR

MRC Council Study - Results of Hydropower Thematic Areas

Hydropower Team

David A., Voradeth P. and Palakorn C.

Outlines of Presentation

- 1) Objectives & Approach
- 2) Hydropower Scenarios
- 3) Key Findings
 - I. Model Results
 - II. Ecological and Environmental Impacts
 - III. Socio-Economic Assessment (SEA)
 - IV. Macro-Economic Assessment (MEA)
- 4) Overall Key findings Hydropower Thematic

1. Objectives

- Present: the assessment of
 - The Impacts (Positive and Negative) including
 - The **cumulative impacts** (Positive and Negative) of hydropower development in the mainstream and tributaries of LMB.

Focus:

- How the dams can influence <u>fisheries</u>, river flow, sediment and nutrient flux in <u>terms of quantity</u>, quality, timing
- The resulting transboundary positive and negative impacts on environmental, social and economic parameters in the mainstream corridor, floodplains and Delta as well as coastal processes.

Estimate:

- The various economic benefits
- The updated assessment of sediment transport and the effect of change on geomorphology and fisheries.

1. Approach

Hydropower Projects on the Lower Mekong and Tributaries

Majority in Lao PDR

2. Hydropower Scenarios

The additional 4 sub-scenarios have been developed to test effects of water resources development in the hydropower sector

Scenarios			Level of Development for water-related sectors					Climate	Flood- plain
Scenario	ALU	DIW	FPF	HPP	IRR	NAV	Cilillate	plain	
МЗСС	Planned Development Scenario 2040 with climate change	2040	2040	2040	2040	2040	2040	More seasonal	2040
Н1а	Planned Development 2040 without HPP	2040	2040	2040	2007	2040	2040	More seasonal	2040
H1b	Planned Development 2040 without mainstream HPP	2040	2040	2040	Only tributary	2040	2040	More seasonal	2040
H2	Planned Development Scenario 2040 with climate change	2040	2040	2040	2040	2040	2040	More seasonal	2040
Н3	Planned Development 2040 with Mitigation	2040	2040	2040	2040 with Mitigation	2040	2040	More seasonal	2040

3.1 Key Findings - Model Results: Flow Level

The average flow (cms) and percentage change from sub-scenarios

Results from SWAT-IQQM Simulation

- The seasonal and transboundary effects of hydropower development
- The flow change in **M3CC** compared with **H1a**
 - Around 7% reduction in flow at all key stations during Wet season
 - Around 7% increase in flow at all key stations during Dry season.
 - The annual average flow, the difference in percentage is less than 1% only.

3.1 Key Findings - Model Results : Sediment

- Under both the 2040 Scenarios
 with and without climate change
 impact: the anticipated most
 significant change is the
 reduction in sediment flux to the
 delta.
- Large part of this reduction is due to the trapping of sediments in dams in the Upper Basin and in tributary dams of the LMB.
- The impacts from mainstream hydropower dams on river flow connectivity include trapping of sediment and alteration of flow regimes. These impacts can be substantial and far-reaching, and overshadow those from all other planned water-resource developments in the LMB.

3.II Key Findings - Ecological and Environmental Impacts

- The difference in health for geomorphology (habitat quality) between 2040CC and the hydropower sub-scenarios
 - → Confirms *Negative Impacts* from Hydropower Development
- The sediment flushing measures included in H3 yielded slight improvements in river condition relative to Scenario 2040CC in the lower reaches of the LMB.
- The effectiveness of fish passages in the main channel dams were assessed at 50% which is also important for the improvement of the ecosystem integrity condition

3.III Key Findings - Socio Economic Assessment

Relative changes in the value (US\$) of Fish Production: by corridor zone across development scenarios

J					-			
Fish production	M1-M	-M2 M1-M3		13	M3-M	M2-M3		
SIMVA Zone	\$'000	%	\$'000	%	\$'000	%	\$'000	%
Zone 2-Mainstream - Lao	-54,378	-39%	-95,312	-67%	-3,290	-7%	-40,934	-47%
Zone 3 A - Lao - Mainstream	-143,710	-34%	-222,263	-53%	-14,056	-7%	-78,553	-28%
Zone 2 B-Upper Thailand	-25,767	-41%	-33,888	-55%	-385	-1%	-8,122	-22%
Zone 2 C-Lower Thailand	-27,831	-39%	-45,975	-65%	-959	-4%	-18,143	-42%
Zone 3 B Thailand-Mainstream	-259,429	-37%	-407,490	-58%	-20,071	-7%	-148,062	-34%
Zone 3 C Thailand-Songkhram	-55,141	-40%	-86,611	-63%	-4,266	-8%	-31,470	-38%
Zone 4 A Cambodia-Khone Falls to Kratie	-9,125	-15%	-20,696	-33%	214	1%	-11,571	-22%
Zone 4 B Cambodia-3S	-2,126	-15%	-4,822	-35%	50	1%	-2,696	-23%
Zone 4 C Cambodia Kratie to Viet Nam border	-77,002	-18%	19,223	4%	2,284	0%	96,224	27%
Zone 5 A Cambodia-Tonle Sap river	-100,060	-18%	-177,125	-32%	15,506	4%	-77,065	-17%
Zone 5 B Cambodia Tonle Sap lake	-81,782	-15%	-149,746	-27%	-37,783	-9%	-67,964	-14%
Zone 6 A Viet Nam Delta - freshwater	-102,828	-2%	-170,567	-3%	97,470	2%	-67,739	-1%
Zone 6 B Viet Nam Delta - saline	-108,712	-8%	-176,644	-13%	99,795	8%	-67,933	-5%
Total	-1,047,892	-25%	-1,571,918	-38%	134,509	-2%	-524,026	-21%

- Changing value for fish production in corridor zone = \$1.57 billion loss
- The negative transboundary effect would have on the fisheries sector and will most affect Thailand and Lao PDR (as % change between scenarios)

3.IV Key Findings - Macro Economic Assessment

Net present value of the hydropower sector in billion US\$ compared to M3CC

Difference to M3CC	in \$B	H1a - M3CC	H1b - M3CC	Tributary	Mainstream
Cambodia	В\$	-11.9	-4.4	7.5	4.4
Lao PDR	В\$	-36.1	-17.1	19.0	17.1
Thailand	В\$	-81.1	-61.8	19.3	61.8
Vietnam	В\$	-26.7	-15.2	11.5	15.2
LMB	В\$	-155.7	-98.4	57.3	98.4

- Within the hydropower sector **substantial benefits** occur across the border as the import of **cheap electricity** generate **large economic gains in Thailand** and **Vietnam**.
- The economic benefits within Lao PDR and Cambodia as the host countries of mainstream and tributary dams are likely to receive the smaller fraction of economic returns.

3.IV Key Findings - Macro Economic Assessment

Economic benefit changes in % of fisheries sector income compared to M3CC

% → M3CC	H1a	H1b	Н3	
% 7 1VI3CC	no HPP	no Main	HPP with mitigation	
Cambodia	+27.5%	+9.6%	+9.6%	
Lao PDR	+124.2%	+63.9%	+2.5%	
Thailand	+97.3%	+46.2%	+1.6%	
Vietnam	+13.8%	+7.0%	-0.2%	
LMB	+37.9%	+16.9%	+4.7%	

- The hydropower interventions considered by the selected scenarios have the strongest influence on economic indicators.
- Substantial trade-offs need to be expected in the fisheries sector, which is likely to increase food security risks for various areas in the lower Mekong basin.
- Hydropower development with <u>adequate mitigation measures</u> ensuring sustainability of other sectors is overall the most economically positive approach for the region and, in a transboundary sense, for the individual countries.

4. Overall Key findings – Hydropower Thematic

- Hydropower emerges as the sector with highest relevance to contribute to macro-economic growth for the lower Mekong basin with a nearly half of the combined sector growth under 2040 plans
- However, hydropower is also linked to the highest trade-offs: About 26% of the hydropower gains would be lost in the fisheries sectors under the medium plan development scenario and 15% for the long term development scenario. Implemented mitigation measures could reduce in the long term development scenarios fish losses by an estimated 11%

Thank you

